

Kicking Things Off

Jim Duffy
• Director of Business Development

CODE Magazine & Consulting

• Former Developer – Drawn to the Dark Side: Now Responsible for

Marketing & Business Development

• jduffy@codemag.com / My Bio

• International Author and Speaker

• Former Microsoft RD (Regional Director) 9 years

• Former 11-time Microsoft Most Valuable Professional (MVP)

• Twitter: @jmduffy

mailto:jduffy@codemag.com
https://www.codemag.com/People/Bio/Jim.Duffy

About CODE Consulting

“Helping People Build Better Software”
• Microsoft Certified Partner

• Custom Software Development, Training, Mentoring,…

• Web, Cloud, Mobile, Desktop, Serverless, Databases,…

• User Interface and Interaction Design

• Project Rescue, App Modernization (VB, VFP, Access, etc.)

• Development Team Staff Augmentation

Your Ticket to Free Consulting

• One hour on us. Really. Schedule a call

today. Slots are limited.

• No strings. No commitment. No credit card

required.

• Just help from our team of experienced

software developers.

• Got questions? Stuck on an issue? Platform

and/or architecture decisions to make? We

can help!
Contact us at:

info@codemag.com or

jduffy@codemag.com

mailto:info@codemag.com
mailto:jduffy@codemag.com

CODE Is Hiring!

• We have current openings for:

• Data Engineer

• Python Developer

• Senior C# Developer

• .NET Desktop Developer

• REACT & JavaScript Developers

• Details here: https://codemag.com/Jobs

We Need Developers!

https://codemag.com/Jobs

Join Us On Social Media

• YouTube channel: https://tinyurl.com/CODEYTC

• Twitter: https://twitter.com/CODEmagazine

• Facebook: www.facebook.com/CODEMagazine/

• LinkedIn: https://www.linkedin.com/company/code-magazine/

https://tinyurl.com/CODEYTC
https://twitter.com/CODEmagazine
http://www.facebook.com/CODEMagazine/
https://www.linkedin.com/company/code-magazine/

Free Subscription to CODE Magazine!

• The leading software development magazine written by expert

developers for developers.

• All registered attendees will automatically receive a free digital

subscription to CODE Magazine – no need to do anything, it’ll happen

auto-magically.

• Upgrade to Print and receive our .NET 7 CODE Focus issue FREE! (while

supplies last)

•Please share this free subscription link:

https://bit.ly/3NTrS6F

https://bit.ly/3NTrS6F

CODE Mobile App

• Check out the new

CODE Magazine Mobile application!

• Available for iOS & Android

https://apps.apple.com/us/app/code-magazine-mobile/id1510075344
https://play.google.com/store/apps/details?id=com.codemag.code

New CODE Training Course

• 3-Day

• Online

• Hands-on

• Learn to develop robust and secure C#
applications

• January 24-26 https://bit.ly/3G3WMr1

• March 7-9 https://bit.ly/3Txcvlf

• April 18-20 https://bit.ly/3WRXugZ

• June 6-8 https://bit.ly/3ObqWe5

• https://www.codemag.com/training

https://bit.ly/3G3WMr1
https://bit.ly/3Txcvlf
https://bit.ly/3WRXugZ
https://bit.ly/3ObqWe5
https://www.codemag.com/training

Build Cross Platform Apps With Photino

• Build native, cross-platform desktop apps that are lighter than light.

• Lightweight open-source framework for building native, cross-

platform desktop applications with Web UI technology.

• Photino is maintained by the CODE Magazine team with the help of

the open-source community.

•tryphotino.io

•Github.com/tryphotino

tryphotino.io
Github.com/tryphotino

Event Survey – Win $100!

• Starting at 1:15pm ET Complete
this very short 12 question survey
for a chance at a $100 Amazon
Gift Card!

https://bit.ly/3UI4jQV
• Survey must be completed by

11:59pm ET on Friday
11/18/2022 to be eligible!

• Completed survey is required to
be eligible.

THIS SLIDE WILL BE REPEATED AT THE END AND SURVEY LINK REPEATED IN THE CHAT WINDOW!

https://bit.ly/3MC2Ho4

Recordings & Slide Decks

• State of .NET Webinar Series

• https://www.codemag.com/StateOfDotNet

• CODE Presents Webinar Series

• https://www.codemag.com/CODEPresents

https://www.codemag.com/StateOfDotNet
https://www.codemag.com/CODEPresents

About the Presenter

• Joydip Kanjilal

• Microsoft MVP

• CODE Author

• Author, Speaker

• 25+ Years Software Development Experience

Improving String Performance

in .NET

Joydip Kanjilal

(Microsoft Most Valuable Professional (2007 – 2012), Author & Speaker)

Agenda

❑ Understanding the Common Language Runtime

❑ Just-in-Time Compiler

❑ Common Type System

❑ Garbage Collection

❑ Generations

❑ How are Strings Represented in the Memory?

❑ Performance Challenges in String Handling in C#

❑ Improving String Performance in C#

❑ Benchmarking String Performance

❑ Best Practices

The Common Language Runtime (CLR)

The Common Language Runtime (CLR) is a runtime engine that is responsible for executing your

programs. It is language-agnostic, meaning it can execute code written in any supported .NET

languages. This is made possible by using just-in-time (JIT) compilation, which converts IL code

into native machine code at runtime.

The CLR provides several services, such as the following:

✓ Common Type System

✓ Common Intermediate Language

✓ Memory Management & Garbage Collection

✓ Just-in-time Compilation

✓ Thread Management

✓ Exception Handling

✓ Security

The Common Type System (CTS)

The Common Type System (CTS) is a standard that specifies how .NET types are actually stored

in the managed memory. The CTS permits the coexistence of several languages targeted at the

CLR. The CTS is adept at defining how types in the managed execution environment of the CLR

are declared, used, and managed.

The CTS provides support for the following five categories of types:

✓ Classes

✓ Structures

✓ Enumerations

✓ Interfaces

✓ Delegates

The Common Intermediate Language (CIL)

Originally known as Microsoft Intermediate Language (MSIL), Common Intermediate Language

(CIL) is a platform-independent language that is used to write source code for .NET

applications. It is a collection of platform-independent instructions created by the compiler

from the source code.

The Just-in-Time (JIT) compiler converts the CIL into machine code at runtime. In other words,

the JIT compiler turns CIL into machine code specific to the target environment, i.e., the

environment in which the application must run.

Memory Management & Garbage Collection

When a new process is launched, the CLR reserves a block of memory known as the
managed heap. The managed heap holds a reference to the location where the next item
in a heap will be allocated, which is initially set at the base address. All reference types
are allocated on the managed heap, and the CLR will allocate address space from the heap
automatically as long as enough addresses are in the address space.

The garbage collector in .NET takes care of how your application releases or frees up
memory. The common language runtime creates a new object by taking memory from the
managed heap. As long as the address space is in the managed heap, the runtime will keep
providing new object space.

A garbage collection is eventually required to free up space in the managed memory.
Based on the allocations made, the optimizing engine of the garbage collector figures out
when is the appropriate time to do a collection. A garbage collector checks the managed
heap for objects no longer used by the application and releases their occupied memory
during a collection.

Conditions for Garbage Collection

A Garbage Collection cycle is triggered when any of the following is true:

➢ The system is low on available physical memory, i.e., the available physical memory is

insufficient. Usually, the operating system detects low memory and sends a notification

accordingly.

➢ On the managed heap, allocated objects use more memory than is acceptable. This

threshold is continually updated while the process is running.

➢ The GC.Collect() method is invoked explicitly in the application. You seldom need to invoke

this method since the garbage collector runs continuously in the background. However, you

might need to invoke this method in specific scenarios.

Generations

The managed heap is split into three generations, 0, 1, and 2, allowing short-lived objects to be

treated independently from long-lived objects to optimize performance. Generation 0, or the

first generation, is used to store short-lived objects. If an object has a longer life expectancy, it

is moved into one of the higher generations, i.e., generation 1 or 2.

When we collect a generation, we collect all the objects in that generation and its younger

generations. Due to the fact that a generation 2 garbage collection reclaims objects across all

generations, i.e., the entire managed heap, it is also referred to as a full garbage collection.

Small Object Heap (SOH) & Large Object Heap (LOH)

The GC creates two heap segments (the small object heap or the SOH and the large object heap or the

LOH) when the CLR is loaded in the memory. The small object heap can store small objects generally

less than 85KB in size.

Large object heaps can hold large objects typically larger than 85KB. The SOH is a section of the

managed heap reserved for objects with a size of fewer than 85,000 bytes. The LOH is a section of the

managed heap that may contain objects greater than 85KB in size.

Large objects are costly in terms of performance because:

➢ The allocation cost is high

➢ The LOH is collected with the rest of the heap

Although the GC doesn’t compact the large object heap for you, you can compact the LOH

programmatically:

GCSettings.LargeObjectHeapCompactionMode = GCLargeObjectHeapCompactionMode.CompactOnce;

GC.Collect();

What are Strings in .NET?

A string is defined as a sequence of characters and represented using the BSTR rule. It

is a reference type, is immutable, can contain null characters and overloads the ==

operator.

At a quick glance, a string in .NET has the following characteristics:

❑ Is a Reference type

❑ Is Immutable

❑ Is Thread-safe

❑ Can contain null values

Performance Challenges of Strings in .NET

A string is an immutable type which means that once you have created a string object,

you cannot change it in any way. When you change or modify a string object, a new

instance is created. There are several ways to overcome this performance issue.

This session talks about how strings are represented in the CLR memory, the

performance challenges you would often encounter when working with strings and how

to fix them in C#.

Benchmarking Performance using

BenchmarkDotNet in .NET 7

Demo

Benchmarking performance using

BenchmarkDotNet in .NET 7

❑ Create a Console Application Project in Visual Studio 2022 Preview

❑ Install the BenchmarkDotNet NuGet Package

✓ Install-Package BenchmarkDotNet

❑ Execute the Benchmark Methods

❑ Compare & Analyze Performance

Benchmarking Performance: Getting Started

Create a class named StringPerformanceBenchmarks in a file having the same name with a ".cs"

extension and write the following code in there:

[Orderer(BenchmarkDotNet.Order.SummaryOrderPolicy.SlowestToFastest)]

[RankColumn]

[MemoryDiagnoser]

public class StringPerformanceBenchmarks

{

const int COUNTER = 100;

const string TEXT = "This is a sample string for testing purposes only.";

//Write your benchmark methods here

}

String vs StringBuilder

[Benchmark]

public void AppendStringsUsingStringClass()

{

string str = string.Empty;

for (int i = 0; i < COUNTER; i++)

{

str += TEXT;

}

}

String vs StringBuilder

[Benchmark]

public void AppendStringsUsingStringBuilder()

{

StringBuilder stringBuilder = new StringBuilder();

for (int i = 0; i < COUNTER; i++)

{

stringBuilder = stringBuilder.Append(TEXT);

}

}

Benchmarking String vs StringBuilder

Performance

Create StringBuilder Using StringBuilderPool

[Benchmark]

public void CreateStringBuilderWithPool()

{

var stringBuilderPool = new DefaultObjectPoolProvider().

CreateStringBuilderPool();

for (var i = 0; i < COUNTER; i++) {

var stringBuilder = stringBuilderPool.Get();

stringBuilder.Append(TEXT);

stringBuilderPool.Return(stringBuilder);

}

}

Create StringBuilder Without StringBuilderPool

[Benchmark]

public void CreateStringBuilderWithoutPool()

{

for (int i = 0; i < COUNTER; i++)

{

var stringBuilder = new StringBuilder();

stringBuilder.Append(TEXT);

}

}

Benchmarking Performance: Create

StringBuilder With & Without Pool

Accessing Contiguous Memory: Span<T> and

Memory<T>

Types of Memory Supported in .NET

❑ Stack memory

❑ Managed memory

❑ Unmanaged memory

The Span<T> and Memory<T> structs give low-level interfaces to any contiguous managed or

unmanaged memory block regardless of whether that memory is managed, is unmanaged, or

is on the stack. They represent a type-safe access to a contiguous block of memory.

Their primary goal is to encourage micro-optimization and to design low-allocation code that

lowers managed memory allocations, thereby relieving the garbage collector. They also

enable you to slice or deal with a piece of an array, string, or memory block without having to

duplicate the whole chunk of memory.

Accessing Contiguous Memory: Span<T> and

Memory<T>

Span<T> is an allocation-free value type with almost zero overhead. It provides a type-safe way

to work with a contiguous block of memory such as: Arrays, Strings, and Unmanaged memory

buffers.

The following are the characteristics of Span<T> at a quick glance:

✓ It is a Value type

✓ It has Low or zero overhead

✓ It is High performant

✓ It provides memory and type safety

public readonly ref struct Span<T>

{

private readonly ref T _pointer;

private readonly int _length;

}

Accessing Contiguous Memory: Span<T> and

Memory<T>

//Convert an Array to a Span

int[] intArray = new[] { 1, 2, 3, 4, 5 };

Span<int> intSpan = intArray;

var mySpanArray = intArray.AsSpan();

//Convert a List to a Span

List<int> intList = new() { 1, 2, 3, 4, 5 };

var myListSpan = CollectionsMarshal.AsSpan(intList);

Extract Strings: String.Substring vs

StringBuilder.Append vs Span<T>

[Benchmark]

public void ExtractStringUsingSubstring()

{

for (int i = 0; i < COUNTER; i++)

{

_= TEXT.Substring(0, 10);

}

}

Extract Strings: String.Substring vs

StringBuilder.Append vs Span<T>

[Benchmark]

public void ExtractStringUsingAppend()

{

StringBuilder stringBuilder = new StringBuilder();

for (int i = 0; i < COUNTER; i++) {

_= stringBuilder.Append(TEXT, 0, 10);

}

}

Extract Strings: String.Substring vs

StringBuilder.Append vs Span<T>

[Benchmark]

public void ExtractStringUsingSpan()

{

for (int i = 0; i < COUNTER; i++)

{

var data = TEXT.AsSpan().Slice(0, 10);

}

}

Benchmarking Performance: String.Substring

vs StringBuilder.Append vs Span<T>

What is String Interning?

String interning involves using a hash table to store a single copy of each string in the string intern

pool. The key is a string hash, and the value is a pointer to the real String object.

Thus, interning guarantees that only one instance of that string is allocated memory, even if the

string appears many number of times. When comparing strings, you only need to perform a

reference comparison if they are interned.

The Intern method in C# is used to obtain a reference to specified string object. This method

looks into the "intern pool" for a string that is identical to the supplied string. If such a string

exists, its intern pool reference is returned.

Although string interning is an exciting feature, it is only used sparingly in practice. Misusing it

can undoubtedly adversely affect our application's performance. We should only consider it if we

plan to create many strings with the same content.

Characteristics of String Interning

❑ The memory location of two identical interned strings will be the same.

❑ Until your application is terminated, internal string memory is not released.

❑ In order to intern a string, a hash must be computed and the string must be searched

in a dictionary, which both consume CPU resources.

❑ Since the dictionary of interned strings is serialized, several threads interning strings

simultaneously will block each other.

❑ Interning a string requires computing a hash and searching a dictionary, both

consuming CPU cycles.

❑ When you use the same string several times in your application, it will only keep one

copy of the string in memory.

❑ This will reduce the amount of memory you need for your application.

❑ If you have a lot of interned strings, string interning can be slow, as threads will block

each other as they access the interned string dictionary.

Code Example Illustrating String Interning

string s1 = "Demonstrating String Interning";

string s2 = new StringBuilder().Append("Demonstrating ").Append("String Interning").ToString();

string s3 = String.Intern(s2);

if ((Object)s2 != (Object)s1)

Console.WriteLine("S1 and S2 are two different references.");

if ((Object)s3 == (Object)s1)

Console.WriteLine("S3 and S1 are same references.");

Compare Strings (Using Interning)

[Benchmark]

public void CompareWithStringIntern ()

{

string str = string.Intern("HelloWorld");

bool isEqual = false;

for (int i = 0; i < COUNTER; i++)

{

var s1 = str; // Uses the interned string

var s2 = str; // Uses the interned string

isEqual = (str == s2);

}

}

Compare Strings (Not Using Intering)

[Benchmark]

public void CompareWithoutStringIntern ()

{

string str = "HelloWorld";

bool isEqual = false;

for (int i = 0; i < COUNTER; i++)

{

var s1 = "World";

var s2 = "Hello" + s1;

isEqual = (str == s2);

}

}

Benchmarking String Compare Performance

(Using Interned & Non-Interned Strings)

Store Interned Strings in a List

[Benchmark]

public void StoreInternedStringsInList()

{

string text = "Hello World";

string temp = null; var list = new List<string>();

for (int i = 0; i < COUNTER; i++)

{

if (temp == null)

temp = string.Intern(text);

else

list.Add(temp);

}

}

Store Non-Interned Strings in a List

[Benchmark]

public void StoreStringsInList()

{

string text = "Hello";

var list = new List<string>();

for (int i = 0; i < COUNTER; i++)

{

list.Add(text + " World");

}

}

Benchmarking String Interning Performance

(Using Interned & Non-Interned Strings)

Leverage StringBuilderCache: Reuse

StringBuilder Instances

[Benchmark]

public void WithoutStringBuilderCache()

{

for (int i = 0; i < COUNTER; i++)

{

var stringBuilder = new StringBuilder();

stringBuilder.Append(TEXT);

}

}

Leverage StringBuilderCache: Reuse

StringBuilder Instances

[Benchmark]

public void WithStringBuilderCache()

{

for (int i = 0; i < COUNTER; i++)

{

var stringBuilder = StringBuilderCache.Acquire();

stringBuilder.Append(TEXT);

_ = StringBuilderCache.GetStringAndRelease(stringBuilder);

}

}

Benchmarking Performance: Using & Not

Using StringBuilderCache

How Are Strings Represented in Memory?

While strings in C/C++ are represented in the memory based on the PWSZ (Pointer to Wide-

character String, Zero-terminated) rule, in C#, strings are stored in the memory based on the

BSTR (Basic string or binary string) rule. Note that both PWSZ and BSTR, strings are null-

terminated at the end of the string. Each character in a string consumes 2 bytes and is in the

UTF-16 coding, i.e., two-byte characters of a string in the UTF-16 format.

Generally, a string instance comprises the following:

❑ An 8-byte object header, which consists of a 4-byte SyncBlock and a 4-byte type descriptor.

❑ The length of the string represented as an int32 field. (Used prior to .NET 4)

❑ A total count of the number of characters in the character buffer represented by an int32

field.

❑ The first character in a string represented as System.Char.

❑ A character buffer containing the remaining characters in the string terminated by a null

character at the end.

How Are Strings Represented in Memory?

So, the length of a string on a x86 system is given by 14 + length x 2 bytes in a x86

system and 26 + length x 2 bytes in a x64 system. Hence, on x86 systems the size of an

empty string object is 14 bytes while on x64 systems it is 26 bytes.

Note that prior to .NET 4.0, a string object had an additional field m_arrayLength to

represent capacity. This field has been discarded from the subsequent versions of .NET.

In a x86 system, the length of a string is 14 + length x 2 bytes, while in a x64 system, it

is 26 + length x 2 bytes.

Best Practices

❑ Use StringBuilder for appending strings multiple times

❑ Use Span<T> for allocation free access to contiguous memory

❑ Use StringBuilderPool to reduce allocations

❑ Use StringBuilderCache to reuse StringBuilder instances

❑ Use String Interning to reduce allocation

❑ To extract a string from another, use Span<T>

Suggested Readings

o Writing High-Performance Code Using Span<T> and Memory<T> in C# (Code Magazine)

o Writing High-Performance .NET Code by Ben Watson

o https://github.com/adamsitnik/awesome-dot-net-performance

https://www.codemag.com/Article/2207031/Writing-High-Performance-Code-Using-SpanT-and-MemoryT-in-C
https://github.com/adamsitnik/awesome-dot-net-performance

Thanks!

E-Mail: joydipkanjilal@yahoo.com

Website: https://joydipkanjilal.com/

LinkedIn: https://in.linkedin.com/in/joydipkanjilal

Twitter: https://twitter.com/joydipkanjilal

Blog: https://www.infoworld.com/author/Joydip-Kanjilal/

Github: https://github.com/joydipkanjilal

Other Announcements

Event Survey – Win $100!

• Starting at 1:15pm ET Complete
this very short 12 question survey
for a chance at a $100 Amazon
Gift Card!

https://bit.ly/3UI4jQV
• Survey must be completed by

11:59pm ET on Friday
11/18/2022 to be eligible!

• Completed survey is required to
be eligible.

https://bit.ly/3MC2Ho4

Free Subscription to CODE Magazine!

• The leading software development magazine written by expert

developers for developers.

• All registered attendees will automatically receive a free digital

subscription to CODE Magazine – no need to do anything, it’ll happen

auto-magically.

• Upgrade to Print and receive our .NET 7 CODE Focus issue FREE! (while

supplies last)

•Please share this free subscription link:

https://bit.ly/3NTrS6F

https://bit.ly/3KqK3yS

CODE Is Hiring!

• We have current openings for:

• Data Engineer

• Python Developer

• Senior C# Developer

• .NET Desktop Developer

• REACT & JavaScript Developers

• Details here: https://codemag.com/Jobs

We Need Developers!

https://codemag.com/Jobs

Your Ticket to Free Consulting

• One hour on us. Really. Schedule a call

today. Slots are limited.

• No strings. No commitment. No credit card

required.

• Just help from our team of experienced

software developers.

• Got questions? Stuck on an issue? Platform

and/or architecture decisions to make? We

can help!
Contact us at:

info@codemag.com or

jduffy@codemag.com

mailto:info@codemag.com
mailto:jduffy@codemag.com

CODE Mobile App

• Check out the new

CODE Magazine Mobile application!

• Available for iOS & Android

https://apps.apple.com/us/app/code-magazine-mobile/id1510075344
https://play.google.com/store/apps/details?id=com.codemag.code

New CODE Training Course

• 3-Day

• Online

• Hands-on

• Learn to develop robust and secure C#
applications

• January 24-26 https://bit.ly/3G3WMr1

• March 7-9 https://bit.ly/3Txcvlf

• April 18-20 https://bit.ly/3WRXugZ

• June 6-8 https://bit.ly/3ObqWe5

• https://www.codemag.com/training

https://bit.ly/3G3WMr1
https://bit.ly/3Txcvlf
https://bit.ly/3WRXugZ
https://bit.ly/3ObqWe5
https://www.codemag.com/training

CODE Presents - codemag.com/codepresents

Q&A

Contact us with questions!

CODE/EPS Contact:
www.codemag.com
info@codemag.com
facebook.com/codemag
twitter.com/codemagazine

Contact:
jduffy@codemag.com

facebook.com/codemag
twitter.com/codemagazine
mailto:jduffy@codemag.com

